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Abstract In present study, an interval optimization problem is addressed in which
both objective and constraint functions are non-differentiable. The existence of the
solution for this problem is investigated. Further, the necessary and sufficient optimal-
ity conditions are explored. Moreover, the weak and strong duality relations between
the primal and the corresponding dual interval optimization problem are established.
Counterexamples are discussed to justify the present work.
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1 Introduction

Parameters in the objective and constraint functions of a general optimization problem
have been considered as fixed real numbers. However, in most of the real life situa-
tions, these parameters may contain some uncertainty due to the presence of indistinct
information in the data set. Such type of uncertainty can be easily interpreted in terms
of closed intervals. Therefore, the optimization problem with parameters as closed
intervals is called an interval optimization problem (I OP). The optimality condi-
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tions and duality theory for I OP plays an important role in optimization theory. The
duality relations for linear optimization problem with inexact data were well studied
[5,10,12–14,16]. Wu [17–19] and Jayswal et al. [7] discussed duality results and opti-
mality conditions for interval optimization problem in which the objective function
is an interval valued, constraint functions are real valued and both are differentiable.
Ahmad et al. [1] obtained sufficient optimality conditions and duality results for dif-
ferentiable interval optimization problems using generalized invexity.

If at least one of the objective and constraint functions in I OP is not differentiable,
then I OP becomes a non-differentiable I OP . Recently, Sun and Wang [15] gave the
concept of LU optimal solution to non-differentiable interval programming problem
problem, where objective function is interval valued and constraint functions are real
valued. Anurag et al. [2] discussed the optimality criteria using saddle point theory
for non-smooth interval optimization problem. The Fritz John and Kuhn-Tucker type
necessary and sufficient optimality conditions were described for this problem. They
also established desired duality theorems using LU partial ordering. However, the
optimality conditions and duality relations for general non-differentiable interval pro-
gramming problem inwhich objective and all constraints are interval valued functions,
have not been explored so far. Therefore, the aim of the investigation is to study the
optimality conditions and duality theory for a general interval optimization problem
without assuming the differentiability of the objective as well as constraint functions.

The remaining part of the composition is organized as follows. In Sect. 2, some
prerequisites, which are utilized for developing the solution is defined. Existence solu-
tion of I OP is discussed in Sect. 3. The necessary and sufficient optimality condition
for non-differentiable I OP is described in Sect. 4. In Sect. 5, The dual problem for
non-differentiable I OP is discussed and desire duality relations between primal and
dual problems are established.

2 Preliminaries

The following notations are used throughout the paper :
Bold capital letters denote closed intervals, and small letters denote real numbers.
I (R) is the set of all closed intervals in R.
(I (R))k is the product space I (R) × I (R) × . . . × I (R)

︸ ︷︷ ︸

k times

.

Ck
v is k-dimensional column vector whose elements are intervals. That is,

Ck
v ∈ (I (R))k,Ck

v = (C1,C2, . . . ,Ck)
T ,C j = [cLj , cRj ], j ∈ Λk,Λk ={1, 2, . . . , k}.

For two real vectors a = (a1, a2, . . . , an)T , b = (b1, b2, . . . , bn)T in Rn , we
denote

a �v b ⇔ ai ≥ bi ; a �v b ⇔ ai ≤ bi ; a >v b ⇔ ai > bi ;
a <v b ⇔ ai < bi , i ∈ Λn .
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The binary operation � between two intervals A = [aL , aR] and B = [bL , bR] in
I (R), denoted by A � B is the set {a ∗ b : a ∈ A, b ∈ B}, where ∗ ∈ {+,−, ·, /}
is a binary operation on the set of real numbers. In the case of division, A � B, it
is assumed that 0 /∈ B. These interval operations can also be expressed in terms of
parameters. Any point in Amay be expressed as a(t) = aL + t (aR − aL), t ∈ [0, 1].
Algebraic operations of intervals may be explained in parametric form as follows.

A � B = {

a(t1) ∗ b(t2)| t1, t2 ∈ [0, 1]}. (1)

The following prerequisites are required to develop the results in Sects. 4 and 5.
The set of intervals I (R) is not a totally order set. Several partial orderings in I (R)

exist in the literature. The partial ordering in parametric form is considered due to
Bhurjee and Panda [4].

Definition 1 [4] For A,B ∈ I (R),

A � B if a(t) ≤ b(t), ∀ t ∈ [0, 1] and A ≺ B if A � B and A �= B. (2)

Note : A ≺ B is equivalent to a(t) ≤ b(t),∀ t ∈ [0, 1] and for at least one t ′ �=
t, a(t ′) < b(t ′).

Many authors [6,9,17] defined interval valued function in several ways. The concept
of Bhurjee and Panda [4] for interval valued function is implemented in the parametric
form.

Definition 2 [4] For c(t) ∈ Ck
v, let fc(t) : Rn → R. For a given interval vector Ck

v ,
define an interval valued function FCk

v
: Rn → I (R) by

FCk
v
(x) =

{

fc(t)(x)
∣

∣

∣ fc(t) : Rn → R, c(t) ∈ Ck
v

}

.

For every fixed x , if fc(t)(x) is continuous in t then mint∈[0,1]k fc(t)(x) and
maxt∈[0,1]k fc(t)(x) exist. In that case

FCk
v
(x) =

[

min
t∈[0,1]k

fc(t)(x), max
t∈[0,1]k

fc(t)(x)

]

.

If fc(t)(x) is monotonically increasing in t , then FCk
v
(x) = [ fc(0)(x), fc(1)(x)].

The convexity property is defined for interval valued function with respect to partial
ordering in order to develop the optimality conditions and duality relations for I OP .

Definition 3 [4] Suppose D ⊆ Rn is a convex set. For given Ck
v ∈ (I (R))k , the

interval valued function FCk
v

: D → I (R) is said to be convex with respect to � if for
every x1, x2 ∈ D and 0 ≤ λ ≤ 1,

FCk
v
(λx1 + (1 − λ)x2) � λFCk

v
(x1) ⊕ (1 − λ)FCk

v
(x2). (3)
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From (2), one may observe that FCk
v
is convex with respect to � means

fc(t)(λx1 + (1 − λ)x2) ≤ λ fc(t)(x1) + (1 − λ) fc(t)(x2),

for all t ∈ [0, 1]k; t is same in both sides. So we can conclude that FCk
v
is convex with

respect to � if and only if fc(t)(x) is a convex function on D for every t ∈ [0, 1]k .
Now, the differentiability and non-differentiability for interval valued functions in
parametric form are stated.

Definition 4 The interval valued function, FCk
v

: Rn → I (R) is said to be differ-

entiable at x∗ if fc(t) is differentiable at x∗ for every t ∈ [0, 1]k . If for at least one
t ∈ [0, 1]k, fc(t) is not differentiable at x∗, then FCk

v
is called non-differentiable

function at x∗.

Example 1 An interval valued function, FC2
v

: R2 → I (R) define as,

FC2
v
(x1, x2) = [1, 3]|x1| ⊕ [−2, 1] (|x1| − |x2|)

=
{

fc(t)(x1, x2)|c(t) ∈ C2
v, fc(t) : R2 → R

}

,

where fc(t)(x1, x2) = (1 + 2t1)|x1| ⊕ (−2 + 3t2)(|x1| − |x2|). Since fc(t) is non-
differentiable function at (0, 0) for each t1, t2, so FC2

v
is non-differentiable interval

valued function at (0, 0).

Let X be a locally convex real vector space with dual space X ′; let C be an open
convex subset of X ; let ξ ∈ X ′; let f : X → R.

Definition 5 [3] The normal cone to the set C at x∗ ∈ X denoted by NC (x∗), is
defined as

NC (x∗) =
{

ξ ∈ X ′| (x − x∗)T ξ ≤ 0,∀x ∈ X
}

.

Definition 6 [3] At a point x∗ ∈ X, ξ ∈ X ′ is said to be the sub-gradient of a convex
function f if

(x − x∗)T ξ ≤ f (x) − f (x∗),∀x ∈ X.

Definition 7 [3] At a point x∗ ∈ X, ξ ∈ X ′ is said to be the sub-gradient of a strictly
convex function f if

(x − x∗)T ξ < f (x) − f (x∗),∀x ∈ X.

Definition 8 [3] The set of all sub-gradients of f at x∗ is called the sub-differential
of f at x∗ and is denoted by ∂ f (x∗). That means

∂ f (x∗) =
{

ξ ∈ X ′ | (x − x∗)T ξ ≤ f (x) − f (x∗),∀x ∈ X
}

.
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Proposition 1 [8] Let f be an m-dimensional convex vector functions on the convex
set Γ ⊂ Rn . Then either

(I) f (x) <v 0 has a solution x ∈ Γ or
(II) pT f (x) ≥ 0 for all x ∈ Γ for some p �v 0, p ∈ Rm but never both.

3 Interval optimization problem

Consider the following interval optimization problem as,

(I OP) min FCk
v
(x)

subject to G j

D
m j
v

(x) � 0, j ∈ Λp,

where FCk
v
,G j

D
m j
v

: Rn → I (R) are represented by the sets, FCk
v
(x) = { fc(t)(x) |

fc(t) : Rn → R, c(t) ∈ Ck
v} andG j

D
m j
v

(x) = {g j
d(t ′j )

(x) | g j
d(t ′j )

(x) : Rn → R, d(t ′j ) ∈
D
m j
v }.
Following the partial orderings as in expression (2), the feasible region of I OP

can be expressed as the set,

� = {x ∈ Rn : G j

D
m j
v

(x) � 0, j ∈ Λp}
= {x ∈ Rn : g j

d(t ′j )
(x) ≤ 0, ∀ t ′j , j ∈ Λp} ≡ {x ∈ Rn : gR

j (x) ≤ 0, j ∈ Λp},

where gR
j (x) = max

t ′j∈[0,1]m j
g j
d(t ′j )

(x), j ∈ Λp.

For weight function w(t) define as w : [0, 1]k → R+, we construct a deterministic
optimization problem as follows.

(I OPw) min
x∈�

∫

k
w(t) fc(t)(x) dt,

where
∫

k =
∫ 1

0

∫ 1

0
. . .

∫ 1

0
︸ ︷︷ ︸

k times

, t = (t1, t2, . . . , tk)T and dt = dt1dt2 . . . dtk .

Here t1, t2, . . . , tk are mutually independent and each ti varies in [0, 1]. So the
objective function of I OPw is a function of x only, say Φ(x). Hence I OPw becomes

min
x∈�

Φ(x), where Φ(x) =
∫

k
w(t) fc(t)(x) dt.

This is a general nonlinear optimization problem, which is free from interval uncer-
tainty.
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Definition 9 [4] Any point x∗ ∈ � is called an efficient solution of I OP if there is
no x ∈ � with

fc(t)(x) ≤ fc(t)(x
∗), ∀ t ∈ [0, 1]k and for at least one t̂ �= t fc(t̂)(x) < fc(t̂)(x

∗).
(4)

The problem, I OP is said to be a convex if the objective and constraint functions are
interval valued convex functions with respect to �.

Theorem 1 [4] If I OP is an interval valued convex programming problem then
I OPw is a convex programming problem.

The relation between the solution of I OP and I OPw is developed as follows.

Theorem 2 Any point x∗ ∈ � is an efficient solution of the convex I OP if and only
if x∗ is an optimal solution of I OPw.

Proof Let x∗ be an efficient solution of a convex I OP , then there exists no x ∈ �

satisfying the relation (4). Since I OP is a convex interval optimization problem, so the
objective functionFCk

v
is interval valued convex functions with respect to�. Therefore

fc(t) is convex on a convex set � for each t . From relation (4), this means that the
following system has no solution on �.

fc(t)(x) − fc(t)(x
∗) ≤ 0, ∀ t ∈ [0, 1]k and for at least one

t̂ �= t fc(t̂)(x) − fc(t̂)(x
∗) < 0. (5)

Assume F(x) = ( fc(t)(x) − fc(t)(x∗), fc(t̂)(x) − fc(t̂)(x
∗))T . The system of inequal-

ities, (5) can be write as F(x) �v 0 has no solution, implies that F(x) <v 0 has
no solution. Hence from the Proposition 1, there exists W = (w(t), w(t̂))T �= 0,
where w : [0, 1]k → R+ such that WT F(x) ≥ 0 for all x ∈ � has solution. This is
equivalent to

w(t)( fc(t)(x) − fc(t)(x
∗)) + w(t̂)( fc(t̂)(x) − fc(t̂)(x

∗)) ≥ 0. (6)

Integrating with respect to t = (t1, t2, . . . , tk) and t̂ = (t̂1, t̂2, . . . , t̂k), relation (6) is
equivalent to

∫

k
w(t) fc(t)(x)dt ≥

∫

k
w(t) fc(t)(x

∗)dt ∀ x ∈ �.

This implies Φ(x) ≥ Φ(x∗). Hence x∗ is an optimal solution of I OPw.

Conversely, let x∗ ∈ � be an optimal solution of I OPw. Assume that x∗ is not an
efficient solution of I OP , then there is some x ∈ � with

fc(t)(x) ≤ fc(t)(x
∗), ∀ t ∈ [0, 1]k and for at least one t̂ �= t, fc(t̂)(x) < fc(t̂)(x

∗).
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For real valued functions w : [0, 1]k → R+, the above relations implies that

∫

k
w(t) fc(t)(x)dt <

∫

k
w(t) fc(t)(x

∗)dt ≡ Φ(x) < Φ(x∗).

This is the contradiction that x∗ is an optimal solution of I OPw. Hence x∗ is an
efficient solution of I OP . ��

4 Optimality conditions for I O P

Consider the following deterministic optimization problem,

(P) min f (x) subject to gi (x) ≤ 0, i ∈ Λp, x ∈ X,

where f, gi : X → R are continuous convex real valued functions, and X is a convex
subset of Rn .

Theorem 3 [11](Fritz John necessary optimality). If x∗ is an optimal solution of the
problem P, and for some x ∈ X, gi (x) < 0,∀i ∈ Λp, then there exist ξ∗ ≥ 0, λ∗ =
(λ∗

1, λ
∗
2, . . . , λ

∗
p)

T �v 0, λ∗ �= 0 such that

λ∗
i gi (x

∗) = 0, i ∈ Λp,

0 ∈ ξ∗∂ f (x∗) +
∑

i∈Λp

λ∗
i ∂gi (x

∗) + NX (x∗).

Fritz John necessary optimality conditions for non-differentiable convex I OP have
been derived as follows.

Theorem 4 If x∗ is an efficient solution of the convex I OP and for some x ∈
�, gR

j (x) < 0, j ∈ Λp, then there exist ξ ≥ 0 and λR = (λR
1 , λR

2 , . . . , λR
p )T �v

0, λR �= 0 such that

λR
j g

R
j (x∗) = 0, j ∈ Λp,

0 ∈ ξ∂Φ(x∗) +
∑

j∈Λp

λR
j ∂g

R
j (x∗) + N�(x∗).

Proof Let x∗ be an efficient solution of convex I OP . FromTheorem2, x∗ is an optimal
solution of convex problem I OPw and for some x ∈ �, gR

j (x) < 0, j ∈ Λp. Hence

from Theorem3, there exist ξ ≥ 0 and λR = (λR
1 , λR

2 , . . . , λR
p )T �v 0, λR �= 0 such

that

λR
j g

R
j (x∗) = 0, j ∈ Λp,

0 ∈ ξ∂Φ(x∗) +
∑

j∈Λp

λR
j ∂g

R
j (x∗) + N�(x∗).

This completes the proof. ��

123



www.manaraa.com

66 A. K. Bhurjee, S. K. Padhan

Theorem 5 Suppose FCk
v
and G j

D
m j
v

, j ∈ Λp are interval valued convex functions

with respect to �. There exist x∗ ∈ � and ξ > 0, λR = (λR
1 , λR

2 , . . . , λR
p )T �v

0, λR �= 0 such that

λR
j g

R
j (x∗) = 0, j ∈ Λp,

0 ∈ ξ∂Φ(x∗) +
∑

j∈Λp

λR
j ∂g

R
j (x∗) + N�(x∗). (7)

Then x∗ is an efficient solution of I OP.

Proof From (7), it follows that there is some α ∈ ∂Φ(x∗), vR
j ∈ ∂gR

j (x∗), j ∈ λp,

and n ∈ N�(x∗) such that 0 = ξα + ∑

j∈Λp
λR
j v

R
j + n. This implies

0 = (x − x∗)T
⎛

⎝ξα +
∑

j∈Λp

λR
j v

R
j + n

⎞

⎠ . (8)

If x∗ is not an efficient solution of I OP , then there exists some x ∈ � such that

fc(t)(x) ≤ fc(t)(x
∗), ∀ t ∈ [0, 1]k and for at least one t̂ �= t fc(t̂)(x) < fc(t̂)(x

∗).

Since FCk
v
is an interval valued convex function with respect to �, so for each t , fc(t)

is a real valued convex function. The convexity of fc(t)(x) implies the convexity of
Φ(x), we have (x − x∗)Tα < 0. For ξ > 0, this relation implies

(x − x∗)T ξα < 0. (9)

From λR
j ≥ 0, gR

j (x) ≤ 0, λR
j g

R
j (x∗) = 0, j ∈ Λp, we have λR

j g
R
j (x) ≤ λR

j g
R
j (x∗).

Since G j

D
m j
v

, ∀ j are interval valued convex functions with respect to �, so for each

t ′j , g
j
d(t ′j )

are convex real valued functions. Convexity of g j
d(t ′j )

implies the convexity

of gR
j , we have

∑

j∈Λp

(x − x∗)T λR
j v

R
j ≤ 0. (10)

Also for n ∈ N�(x∗), we have

(x − x∗)T n ≤ 0. (11)

Adding (9), (10) and (11), we obtain

(x − x∗)T (ξα +
∑

j∈Λp

λR
j v

R
j + n) < 0.

This contradicts (8). Hence x∗ is an efficient solution of I OP . ��
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5 Duality theory for I O P

The dual problem of the primal I OP is defined as follows.

(DI OP) max FCk
v
(y)

subject to 0 ∈ ξ∂Φ(y) +
∑

j∈Λp

λR
j ∂g

R
j (y) + N�(y), (12)

λR
j g

R
j (y) ≥ 0, j ∈ Λp.

Denote Π as the feasible set of DI OP and define as

Π =
{

(y, ξ, λR)| 0 ∈ ξ∂Φ(y) +
∑

j∈Λp

λR
j ∂g

R
j (y) + N�(y), λR

j g
R
j (y) ≥ 0, j ∈ Λp

}

.

Now, we define the efficient solution of DI OP as efficient solution of I OP.

Definition 10 Any point (y∗, ξ∗, λR∗) ∈ Π is called an efficient solution of DI OP
if there is no (y, ξ, λR) ∈ Π with

fc(t)(y) ≥ fc(t)(y
∗), ∀ t ∈ [0, 1]k and for at least one t̂ �= t fc(t̂)(y) > fc(t̂)(y

∗).

Theorem 6 (Weak Duality). Let FCk
v
and G j

D
m j
v

, j ∈ Λp are interval valued convex

functions with respect to �. If x is a feasible solution of primal problem I OP and
(y, ξ, λR) is a feasible solution of dual problem DI OP. Then FCk

v
(x) ⊀ FCk

v
(y).

Proof We assume that FCk
v
(x) ≺ FCk

v
(y). From (12), for some α ∈ ∂Φ(y), vR

j ∈
∂gR

j (y), j ∈ Λ j and n ∈ N�(y) such that 0 = ξα + ∑

j∈Λp
λR
j v

R
j + n. This yields

0 = (x − y)T

⎛

⎝ξα +
∑

j∈Λp

λR
j v

R
j + n

⎞

⎠ . (13)

Similar way to derive relation (9), we have

(x − y)T ξα < 0. (14)

By x ∈ �, (y, ξ, λR) ∈ Π , we have the following inequalities

∑

j∈Λp

λR
j g

R
j (y) ≥ 0 ≥

∑

j∈Λp

λR
j g

R
j (x).

From the convexity of G j

D
m j
v

, j ∈ Λp with respect to �, we get

∑

j∈Λp

(x − y)T λR
j v

R
j ≤ 0. (15)
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Also, since n ∈ N�(y),

(x − y)T n ≤ 0. (16)

Combining (14), (15) and (16), we obtain

(x − y)T

⎛

⎝ξα +
∑

j∈Λp

λR
j v

R
j + n

⎞

⎠ < 0,

which contradicts (13). Hence, this completes the proof. ��
Theorem 7 (Strong Duality). Let x∗ be an efficient solution of I OP, and at x∗ ∈
�, gR

j (x∗) < 0, ∀ j, then there exists ξ∗ ≥ 0 and λR∗ = (λR∗
1 , λR∗

2 , . . . , λR∗
p )T �v 0,

such that (x∗, ξ∗, λR∗) ∈ Π. If FCk
v
andG j

D
m j
v

,∀ j are interval valued convex functions

with respect to � then (x∗, ξ∗, λR∗) is an efficient solution of DI OP.

Proof Since x∗ is an efficient solution of I OP , and at x∗ ∈ �, gR
j (x∗) < 0, j ∈ Λp.

From Theorem 4, there exists ξ∗ ≥ 0 and λR∗ ≥ 0 such that

λR∗
j gR

j (x∗) = 0, j ∈ Λp,

0 ∈ ξ∗∂Φ(x∗) +
∑

j∈Λp

λR∗
j ∂gR

j (x∗) + N�(x∗).

Hence (x∗, ξ∗, λR∗) ∈ Π. Next suppose that (x∗, ξ∗, λR∗) is not an efficient solution
of problem DI OP . Then, there exists a feasible solution (x, ξ, λR) of DI OP such
that

fc(t)(x) ≥ fc(t)(x
∗), ∀ t ∈ [0, 1]k and for at least one t̂ �= t, fc(t̂)(x) > fc(t̂)(x

∗).

That is, FCk
v
(x) � FCk

v
(x∗), which contradicts the Theorem 6. Hence (x∗, ξ∗, λR∗) is

an efficient solution of DI OP. ��
Theorem 8 (Converse Duality). Let x∗ and (y∗, ξ∗, λR∗) be feasible solution for
primal problem I OP and dual problem DI OP, respectively. For all feasible point
(x, y), ξ∗Φ + ∑

j∈Λp
λR∗
j gR

j is strictly convex at y∗ and Φ(x∗) ≤ Φ(y∗). Then
x∗ = y∗.

Proof Assume that x∗ �= y∗. Since (y∗, ξ∗, λR∗) is a feasible solution of dual problem
DI OP , so from (12), for some α∗ ∈ ∂Φ(y∗), vR∗

j ∈ ∂gR
j (y∗), j ∈ Λ j and n ∈

N�(y∗) such that 0 = ξ∗α + ∑

j∈Λp
λR∗
j vR

j + n. This yields

0 = (x∗ − y∗)T
⎛

⎝ξ∗α +
∑

j∈Λp

λR∗
j vR

j + n

⎞

⎠ .
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Since n ∈ N�(y∗), (x∗ − y∗)T n ≤ 0, we have

(x∗ − y∗)T
⎛

⎝ξ∗α +
∑

j∈Λp

λR∗
j vR

j

⎞

⎠ ≥ 0. (17)

From the strictly convexity of ξ∗Φ + ∑

j∈Λp
λR∗
j gR

j , (17) implies

ξ∗Φ(x∗) +
∑

j∈Λp

λR∗
j gR

j (x∗) > ξ∗Φ(y∗) +
∑

j∈Λp

λR∗
j gR

j (y∗). (18)

Since x∗ ∈ � and (y∗, ξ∗, λR∗) ∈ Π , so
∑

j∈Λp
λR∗
j gR

j (x∗) ≤ 0 and
∑

j∈Λp
λR∗
j gR

j (y∗) ≥ 0. From (18), we have ξ∗Φ(x∗) > ξ∗Φ(y∗), which contra-
dicts the assumption Φ(x∗) ≤ Φ(y∗). Therefore x∗ = y∗. ��
Example 2 Consider the following interval optimization problem

(I OP) min F(x1, x2) = [|x1 − x2|, |x1 − x2| + 2]
subject to g(x1, x2) = |x1 − 1| ≤ 0,

(x1, x2) ∈ X,

where X = {x1, x2| |x1| ≤ 1, |x2| ≤ 1}.
For weight function w : [0, 1] → R, the corresponding deterministic problem

I OPw is

(I OPw) min Φ(x1, x2) =
∫ 1

0
w(t)(|x1 − x2| + 2t)dt

subject to g(x1, x2) = |x1 − 1| ≤ 0,

(x1, x2) ∈ X.

In particular w(t) = 1, the problem I OPw becomes,

(I OPw) min Φ(x1, x2) = |x1 − x2| + 1

subject to g(x1, x2) = |x1 − 1| ≤ 0,

(x1, x2) ∈ X.

Since (x∗
1 , x

∗
2 ) = (1, 1) is the minimum solution of I OPw, so from Theorem 2,

(x∗
1 , x

∗
2 ) = (1, 1) is an efficient solution of I OP.

We have,

∂Φ(1, 1) = {(1, 1)},
∂g(1, 1) = {(x1, x2)|x2 ≥ 0, x1 ≥ −1},
NX (1, 1) = {(x1, x2)|x2 ≥ 0, x1 ≥ 0}.
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Then, there exist ξ = 0, λ1 = 1 such that

(0, 0) ∈ ξ∂Φ(1, 1) + λ1∂g(1, 1) + NX (1, 1) and λ1g(1, 1) = 0.

Theorem 4 is verified in this example.

6 Conclusion

The existence of the solution of interval optimization problem is discussed, where
the objective as well as the constraint functions are non-differentiable interval valued.
Necessary and sufficient optimality conditions for this problem are derived. Further,
a dual problem for this objective is defined and developed the relation between the
primal and the dual interval optimization problems. The duality theory and optimality
conditions for a general multi-objective interval optimization problem is established
without assuming the differentiability of the objective and constraint functions.
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